ITPCAS OpenIR  > 图书馆
念青唐古拉山脉西部水热过程及其环境响应研究
田克明
Subtype博士
Thesis Advisor刘景时
2009-01
Degree Grantor中国科学院研究生院
Place of Conferral北京
Degree Name博士研究生
Degree Discipline自然地理学
Keyword念青唐古拉山脉西部  水热过程  气候变化  冻土退化  ndvi响应
Call NumberB000015
Abstract

被称为“地球第三极”的青藏高原深刻影响着我国及东亚乃至北半球天气气候;同
时作为众多冰川的集中地,青藏高原也是我国大江大河的发源地;低温干旱又使得高原生
态环境十分脆弱。随着气候变暖,冰川加速退缩、极端气候重复出现、土地沙漠化等问题
接踵而至;这些问题,都归结于水热的变化。然而由于高原环境恶劣,在一些典型区域鲜
有系统的观测研究。念青唐古拉山脉西段是高原寒冷气候带和温暖气候带的分界线,区域
内冰川、冻土、湿地和西藏第一大湖—纳木错湖共存,能水循环和交换过程复杂,生态系
统多样,是进行各种研究的理想地点。本论文作为众多研究的一部分,利用自2005 年来
在该区域南北坡架设的自动气象站、雨量筒和临近国家气象站40 多年数据结合遥感NDVI
研究了该区域地面和土壤水热过程、水热特征的NDVI 响应及变化,为促进对高原典型区
域的水热特征、能水平衡和交换以及该区域草场变化的理解和研究都有一定的意义。
1 念青唐古拉山脉西部地面水热过程
利用 6 台自架气象站数据分析了该区域气温、相对湿度的季节和日变化特征并进行
了简单对比,发现气温和相对湿度都主要受海拔控制,随海拔升高而减小。气温日变化升
温剧烈而降温平缓,春季比其他季节剧烈;湖边的日变化幅度较其他区域大,非冰雪覆盖
区域比冰雪表面区域大。纳木错湖在冷季对周边的气温影响更加明显,致使湖周气温年较
差比其他区域大。除了气温和降水之外,下垫面情况(冰川、湖面、草甸)和坡向、风向
也对相对湿度大小有较大影响,致使其局地性和季节性都比较明显。夏季风期间相对湿度
日变化幅度保吉最大,非夏季风期间则是冰川垭口最大,南坡5,100 m 处最小。
利用7 个自计雨量筒数据分析了该区域夏季风降水的特征,研究表明,总体上该区
域南北坡夏季风期间受同一降水过程的影响,但受到纳木错湖和地形的影响,南北坡降水
量、振荡周期和日变化过程都存在差异。北面区域的纳木错流域降水比高原整体水平更加
频繁,降水量呈现了从西南向东北增加的分布特征,但不同方向的日变化和昼夜雨分布也
存在差异。
2 念青唐古拉山脉西部土壤水热过程
利用自架气象站和国家气象站观测的土壤温湿度数据的研究表明:念青唐古拉山脉
西部冻土比青藏高原大部分地区冻结迟,融化早;土壤热量状况具有明显的海拔效应和微
弱的纬度效应。同时可能受到积雪状况、植被和土壤含水量差异的影响,不同观测点的地
温年较差、土壤内热量传输速度的时间分布和日变化过程都存在较大差异。土壤含水量受
土壤温度、积雪状况、降水量、地表蒸发、土壤性质和地下水状况等的影响,在冻结期和
融化期皆没有表现出随深度变化的趋势,在季节变化上,北坡在冻结期和融化期有较明显
的突变现象,而在纳木错湖边由于土壤性质和难于形成积雪,没有显现突变现象。三个冻
融周期内,北坡在经过冻结过程之后土壤中水分有损失,而在湖边的保吉几乎没有。对北
坡土壤水热的进一步分析表明,未冻水和降水下渗对土壤水热特征的影响显著,积雪融水
对土壤热特征有微弱影响。
3 念青唐古拉山脉西部水热过程的NDVI 响应及气候变化
响应于水热过程,念青唐古拉山脉西部植被主要在每年的6-10 月期间生长。不同时
间尺度上,该区域植被的主要控制因子不一样。在年尺度上热量和水分对南部植被生长都
有较大影响,而在北部区域受热量的影响更加严重。生长季,降水情况更为严重影响了植
被的生长。月尺度上,南部区域降水比较多,热量是主要控制因子,而北部区域同时受到
热量和水分状况的影响。
临近6 个国家气象站近40 多年的气候数据表明,念青唐古拉山脉西部气温升高显著,
升温速率以冬季最快,其次是秋季;由于北部区域更加干旱、植被更加稀疏,气温升高要
比南部区域剧烈。升温过程使得该区域冻土退化显著,地表0 cm 地温、40 cm 深度在1985
年前后升温幅度分别达1.1 ℃和0.8 ℃,1963-2006 年期间80 cm 地温最大升高了3.4 ℃;
最大冻结深度减小速度高于青藏高原的平均水平。升温过程也使得该区域域植被得到改
善。但非季风期降水(雪)的显著增加,以及升温导致的积雪融化提前,有可能导致严重
的春季洪水。

Other Abstract

As called “the Third Pole of the earth”, the Tibetan Plateau influences the climate of China,
eastern Asia, even the north hemisphere greatly. It is slso the source for big rivers in China as a
lot of glaciers exist there. The ecosystem is quite vulnerable due to the cold and arid environment.
With climate warming, many problems such as glacier retreat, extreme climate and
desertification occurred often, which caused by the changes in heat and water conditions. But
few systematic researches had been conducted in some typical regions due to the formidable
environment. The western Mts Nyainquentanglha is the dividing line of cold and warm climate
on the plateau, where glacier, frozen soils, wetland and the Nam Tso lake, the biggest lake in
Tibet, are, and is a ideal site for scientific studies. This study investigated on air and soil
hydrothermal processes and its NDVI response, as well as the changes with climate warming,
which may improve the understanding on energy and water balance and exchange and
environmental evalution in the mountain areas of the plateau.
1 Ground surface hydrothermal processes in the western Nyainquentanglha
Based on meteorological data from six automatic weather stations, the seasonal and
diurnal variations of air temperature (Ta), precipitation and relative humidity (RH) are
investigated during 2005-2007, analysis shows that Ta and RH are controlled by altitude firstly.
Ta rises quickly and drops slowly in a day. The amplitude of diurnal variation is largest in spring
in the region near Nam Tso lake, so do at the place where no glacier is found than that of glacier.
The effect of Nam Tso lake is quite evident and make the difference between Ta and ground
surface temperature larger in cold season.The RH is also influenced by the ground surface
condition, aspect, wind direction, which is different in different area and season.
The similar daily and diurnal precipitation variations demonstrated the southern and
northern slopes of Nyainquentanglha are controlled by the same precipitation processes. Due to
the vapor and disturbance from the lake and topography, differences exist in the precipitation
amount, oscillation periods and diurnal variation processes. The frequency of precipitation near
the lake is higher than other areas, the precipitation increases from southwest to northeast and the
diurnal variations are different in different part of the lake.
2 Soil hydrothermal processes in the western Nyainquentanglha
Based on soil temperature and moisture data, the results show the soils freeze later and thaw
earlier in the western Nyainquentanglha than that in other regions of Tibetan Plateau. The
altitude effect of soil thermal condition is evident. The annual range, temporal distribution of the
transfer rate of heat within soil and diurnal variation are quite different at different measurement
site due to the impact of snow cover, vegetation and soil moisture. The soil moisture is
influenced by soil temperature, snowcover, precipitation, evaporation, soil characteristics and
ground water, no evident trend exists in the amount and the soil depth. It shows evident an abrupt
change during freezing and thawing periods and get lost after freezing in northern slope except
for the place near the lake. A further study indicates the soil hydrothermal condition is influenced
by unfrozen water and the infiltration of precipitation greatly and gets weak impact from the
infiltration of snow meltwater.
3 The NDVI response to hydrothermal condition and climate change in the western
Nyainquentanglha
The vegetation grows from June to October. The growth of vegetation is controlled by
temperature and water together in southern slope and by temperature evidently in northern slope
at a growth period, while it is inverse at monthly scale. It is relied by precipitation greatly during
growth season.
Climate warming is evident from 1963 to 2006 in the study region. The air temperature
increase most quick in winter, then in autumn. Comparison, it is faster in northern slope than that
in southern. As a result, the frozen soil degraded seriously, the ground temperature increased
about 1.1 ℃at 0 cm depth and 0.8 ℃ at 40 cm depth respectively before and after 1985, it
shown a maximum increase about 3.4 ℃ at 80 cm depth from 1963 to 2006. The decrease rate
of the maximum freezing depth is higher than the average rate in the Tibetan Plateau. The
evident increase of winter precipitation may result in spring flood. But the vegetation is better
than before due to the climate warming.

Department环境变化与地表过程重点实验室
Subject Area自然地理学
MOST Discipline Catalogue理学::地理学
Table of Contents

摘 要 ..............................................................I
Abstract ..........................................................III
目 录 ..............................................................V
第一章 绪论 .......................................................1
第一节 问题的提出 ...............................................1
第二节 水热状况及其变化、环境响应研究进展 .......................4
1.2.1 青藏高原地面水热研究现状 ..............................4
1.2.2 冻土水热特征研究现状 ..................................5
1.2.3 气候变化及其响应研究进展 ..............................8
第三节 研究区域介绍和研究内容 ..................................12
1.3.1 研究区域 .............................................12
1.3.2 研究内容 .............................................14
第二章 念青唐古拉山脉西部地表水热过程 ..............................15
第一节 数据基础 ................................................15
2.1.1 自动气象站(AWS)和国家气象站 ..........................15
2.1.2 雨量筒 ...............................................17
第二节 气温特征 ................................................17
2.2.1 季节变化特征 .........................................17
2.2.2 日变化特征 ...........................................19
第三节 相对湿度特征 ............................................20
2.3.1 季节变化特征 .........................................20
2.3.2 日变化特征 ...........................................21
第四节 夏季风期间降水特征 ......................................23
2.4.1 念青唐古拉山脉南北坡夏季风降水特征分析与对比 .........23
2.4.2 纳木错流域夏季风降水特征及分布 .......................30
第五节 小结 ....................................................35
第三章 念青唐古拉山脉西部土壤水热过程 ..............................37
第一节 数据的采集 ..............................................37
第二节 土壤温度和含水量的时空分布特征及相互关系 ............37
3.2.1 土壤温度季节变化 .....................................37
3.2.2 土壤含水量季节变化 ...................................42
3.2.3 日均土壤温度时空分布 .................................43
3.2.4 日均土壤含水量特征及其与土壤温度的关系 ...............45
3.2.5 土壤温度的日变化 .....................................47
第三节 土壤冻融过程及与土壤温度和含水量的关系 ..................50
3.3.1 土壤冻融过程 .........................................50
3.3.2 土壤含水量分布 .......................................52
第四节 影响土壤温度和土壤含水量的因子 ..........................53
3.4.1 未冻水对土壤热质输移的影响 ...........................54
3.4.2 冰雪融水对土壤水热的影响 .............................55
3.4.3 降水下渗对土壤水热特征的影响 .........................57
第五节 小结 ....................................................58
第四章 念青唐古拉山脉西部气候变化及冻土响应 ........................61
第一节 分析方法 ................................................61
4.1.1 Mann-Kendall 法 ......................................61
4.1.2 Sen’s 坡度估计法 ......................................62
第二节 近 40 多年气候变化 .......................................62
4.2.1 气温变化趋势 .........................................62
4.2.2 降水变化 .............................................64
第三节 念青唐古拉山脉西部冻土对气候变化的响应 ..................66
4.3.1 地温变化趋势 .........................................66
4.3.2 最大冻结深度变化 .....................................69
4.3.3 讨论 .................................................69
第四节 小结 ....................................................70
第五章 念青唐古拉山脉西部水热过程及其变化的 NDVI 响应 ...............71
第一节 NDVI ....................................................71
第二节 数据和方法 ..............................................72
5.2.1 NDVI 数据及处理 ......................................72
5.2.2 气象、气候数据 .......................................72
第三节 NDVI 季节变化 ............................................72
第四节 NDVI 时空变化 ...........................................73
5.4.1 年际变化 .............................................73
5.4.2 NDVI 的多年变化 ......................................74
第五节 NDVI 变化的驱动因子 .....................................75
5.5.1 年NDVI 均值与年均气温、年降水以及浅层地温的关系 ......75
5.5.2 生长季NDVI 均值与同期降水和平均气温的关系 ............77
5.5.3 月NDVI 与气象因子的关系 ..............................79
第六节 小结 ....................................................81
第六章 结语及展望 ..................................................83
第一节 主要结论 ................................................83
第二节 不足和展望 ..............................................85
参考文献 ...........................................................87
个人简历 ..........................................................101
博士期间发表论文 ..................................................103
致 谢 ............................................................105

Pages105 页
URL查看原文
Language中文
Document Type学位论文
Identifierhttp://ir.itpcas.ac.cn/handle/131C11/1232
Collection图书馆
Recommended Citation
GB/T 7714
田克明. 念青唐古拉山脉西部水热过程及其环境响应研究[D]. 北京. 中国科学院研究生院,2009.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[田克明]'s Articles
Baidu academic
Similar articles in Baidu academic
[田克明]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[田克明]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.