Impact of springtime Himalayan-Tibetan Plateau snowpack on the onset of the Indian summer monsoon in coupled seasonal forecasts | |
Senan, R (Senan, Retish)1,2; Orsolini, YJ (Orsolini, Yvan J.)3,4; Weisheimer, A (Weisheimer, Antje)5,6; Vitart, F (Vitart, Frederic)5; Balsamo, G (Balsamo, Gianpaolo)5; Stockdale, TN (Stockdale, Timothy N.)5; Dutra, E (Dutra, Emanuel)5; Doblas-Reyes, FJ (Doblas-Reyes, Francisco J.)7,8,9; Basang, D (Basang, Droma)10,11; Senan, R | |
Source Publication | CLIMATE DYNAMICS
![]() |
2016 | |
Volume | 47Issue:9-10Pages:2709-2725 |
DOI | 10.1007/s00382-016-2993-y |
Abstract | The springtime snowpack over the Himalayan-Tibetan Plateau (HTP) region and Eurasia has long been suggested to be an influential factor on the onset of the Indian summer monsoon. To assess the impact of realistic initialization of springtime snow over HTP on the onset of the Indian summer monsoon, we examine a suite of coupled ocean-atmosphere 4-month ensemble reforecasts made at the European Centre for Medium-Range Weather Forecasts, using their Seasonal Forecasting System 4. The reforecasts were initialized on 1 April every year for the period 1981-2010. In these seasonal reforecasts, the snow is initialized "realistically" with ERA-Interim/Land Reanalysis. In addition, we carried out an additional set of forecasts, identical in all aspects except that initial conditions for snow-related land surface variables over the HTP region are randomized. We show that high snow depth over HTP influences the meridional tropospheric temperature gradient reversal that marks the monsoon onset. Composite difference based on a normalized HTP snow index reveal that, in high snow years, (1) the onset is delayed by about 8 days, and (2) negative precipitation anomalies and warm surface conditions prevail over India. We show that about half of this delay can be attributed to the realistic initialization of snow over the HTP region. We further demonstrate that high April snow depths over HTP are not uniquely influenced by El Nino-Southern Oscillation, the Indian Ocean Dipole or the North Atlantic Oscillation. |
Subject Area | 自然地理学 |
WOS ID | WOS:000386062000001 |
Language | 英语 |
Indexed By | SCI |
Keyword | Data Assimilation System Objective Definition El-nino Cover Variability Rainfall Prediction Enso Predictability Teleconnection |
Cooperation Status | 国际 |
Department | 环境 |
Subtype | Article |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.itpcas.ac.cn/handle/131C11/7513 |
Collection | 图书馆 |
Corresponding Author | Senan, R |
Affiliation | 1.Univ Oslo, Dept Geosci, POB 1022, N-0315 Oslo, Norway 2.European Ctr Medium Range Weather Forecasts, Reading, Berks, England 3.Norwegian Inst Air Res NILU, Kjeller, Norway 4.Bjerknes Ctr Climate Res, Bergen, Norway 5.European Ctr Medium Range Weather Forecasts, Reading, Berks, England 6.Univ Oxford, Dept Phys, UK Natl Ctr Atmospher Sci NCAS, Oxford, England 7.CREA, Barcelona, Spain 8.BSC CNS, Barcelona, Spain 9.Inst Catala Ciencies Clima IC3, Barcelona, Spain 10.Univ Bergen, Inst Geophys, Bergen, Norway 11.Inst Tibetan Plateau Atmospher & Environm Sci Res, Lhasa, Tibet, Peoples R China |
Recommended Citation GB/T 7714 | Senan, R ,Orsolini, YJ ,Weisheimer, A ,et al. Impact of springtime Himalayan-Tibetan Plateau snowpack on the onset of the Indian summer monsoon in coupled seasonal forecasts[J]. CLIMATE DYNAMICS,2016,47(9-10):2709-2725. |
APA | Senan, R .,Orsolini, YJ .,Weisheimer, A .,Vitart, F .,Balsamo, G .,...&Senan, R.(2016).Impact of springtime Himalayan-Tibetan Plateau snowpack on the onset of the Indian summer monsoon in coupled seasonal forecasts.CLIMATE DYNAMICS,47(9-10),2709-2725. |
MLA | Senan, R ,et al."Impact of springtime Himalayan-Tibetan Plateau snowpack on the onset of the Indian summer monsoon in coupled seasonal forecasts".CLIMATE DYNAMICS 47.9-10(2016):2709-2725. |
Files in This Item: | ||||||
File Name/Size | DocType | Version | Access | License | ||
V.47(9-10) 2709-2725(12897KB) | 期刊论文 | 作者接受稿 | 开放获取 | CC BY-NC-SA | View Application Full Text |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment