Changes in Biomass and Quality of Alpine Steppe in Response to N & P Fertilization in the Tibetan Plateau | |
Dong, JF (Dong, Junfu)1,2; Cui, XY (Cui, Xiaoyong)2; Wang, SP (Wang, Shuping)1,3; Wang, F (Wang, Fang)1; Pang, Z (Pang, Zhe)2; Xu, N (Xu, Ning)1; Zhao, GQ (Zhao, Guoqiang)1; Wang, SP | |
Source Publication | PLOS ONE |
2016 | |
Volume | 11Issue:5Pages:e0156146 |
DOI | 10.1371/journal.pone.0156146 |
Abstract | In the alpine steppe zone on the Central Tibetan Plateau, a large amount of area has been degraded due to natural and artificial factors. N & P fertilization is widely accepted to recover degraded pastures in other regions all over the world. However, it is not clear how alpine steppe communities respond to N & P fertilization, and what is the optimal application rate, in the perspective of forage production. To attempt to explore these questions, in July 2013, two fencing sites were designed in Baingoin County with 12 treatments of different levels of nitrogen (N-0: 0; N-1: 7.5 g m(-2) yr(-1); N-2: 15 g m(-2) yr(-1)) & phosphate (P-0: 0; P-1: 7.5 gP(2)O(5) m(-2) yr(-1); P-2: 15 gP(2)O(5) m(-2) yr(-1); P-3: 30 gP(2)O(5) m(-2) yr(-1)). The results indicated N&P addition was capable to ameliorate the quality of the two sites in the Tibetan Plateau steppe. Increasing N application level resulted in significant increment in Gramineae and total biomass in the two sites. P addition significantly improved the quantity of Compositae, total biomass and the biomasss of other species in site II, while it only significantly improved the total biomass in site I. Gramineae was much more sensitive to N-induced changes than P-induced changes, and this indicated N addition was better to ameliorate the quality of plateau steppe than P-induced changes. No strong evidence was found for critical threshold within 15 g N m(-2) yr(-1), and there was decreasing tendency when P addition rate was above 15 g m(-2) yr(-1). N&P has the potential to accelerate soil acidification, which improved the content of available K, likely as a result of nonsignificant correlation between biomass and soil moisture. This work highlights the the tradeoffs that exist in N and P addition in recovering degraded steppe. |
Subject Area | 普通生物学 |
WOS ID | WOS:000376881700065 |
Language | 英语 |
Indexed By | SCI |
Keyword | Soil-moisture Nitrogen Grassland Communities Gradient Meadow Availability Degradation Limitation Management |
Cooperation Status | 国内 |
Department | 生态 |
Subtype | Article |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.itpcas.ac.cn/handle/131C11/7696 |
Collection | 图书馆 |
Corresponding Author | Wang, SP |
Affiliation | 1.Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China 2.Univ Chinese Acad Sci, Coll Life Sci, Beijing 100049, Peoples R China 3.Chinese Acad Sci, Inst Tibetan Plateau Res, Beijing 100101, Peoples R China |
Recommended Citation GB/T 7714 | Dong, JF ,Cui, XY ,Wang, SP ,et al. Changes in Biomass and Quality of Alpine Steppe in Response to N & P Fertilization in the Tibetan Plateau[J]. PLOS ONE,2016,11(5):e0156146. |
APA | Dong, JF .,Cui, XY .,Wang, SP .,Wang, F .,Pang, Z .,...&Wang, SP.(2016).Changes in Biomass and Quality of Alpine Steppe in Response to N & P Fertilization in the Tibetan Plateau.PLOS ONE,11(5),e0156146. |
MLA | Dong, JF ,et al."Changes in Biomass and Quality of Alpine Steppe in Response to N & P Fertilization in the Tibetan Plateau".PLOS ONE 11.5(2016):e0156146. |
Files in This Item: | ||||||
File Name/Size | DocType | Version | Access | License | ||
V.11(5) e0156146 201(898KB) | 期刊论文 | 作者接受稿 | 开放获取 | CC BY-NC-SA | View Application Full Text |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment