ITPCAS OpenIR  > 图书馆
青藏高原东缘龙门山地区现代侵蚀速率时空分 布规律及其构造地貌学意义
文力
Subtype博士
Thesis Advisor刘静
2009-07
Degree Grantor中国科学院研究生院
Place of Conferral北京
Degree Name博士
Degree Discipline构造地质学
Keyword龙门山地区 现代侵蚀速率 构造抬升 地形起伏度 滑坡 均衡 反弹
Call Number无纸质版
Abstract

青藏高原东缘地区无论从地貌特征还是地壳内部构造都具有与高原其他地
方不同的独特性,为了更好的研究青藏高原奇特的地形地貌形成的过程和机制以
及与高原隆升的关系,以及地表过程与地貌景观、气候变化、构造活动之间的响
应关系,我们选择龙门山地区作为研究对象,基于SRTM DEM 和GTOPO 30
DEM 数据量化地貌特征,对该范围内水文数据进行分析处理并量化该区域各集
水面积内的地表现代侵蚀速率,结合各外流水系内的地层特征与降水分布信息,
探索青藏高原东缘特殊地貌特征条件下地表过程与构造隆升、气候变化之间的响
应和反馈作用,并从高原东缘的地貌特征和水系发育形态得出青藏高原东缘活动
构造对区域侵蚀量空间分布特征的控制作用,即活动构造 􀃆 构造抬升(活动构
造两侧差异抬升)􀃆 地形高差􀃆 产生重力势能􀃆 产生高现代侵蚀速率。主要
结论如下:各个站点之间的现代侵蚀速率在时间序列上呈现与流量年际变化之间的相似特征,但是由于受不同气候的影响,现代侵蚀速率与流量之间的相关关系在不同气候区域存在较大的区别,同时各个站点之间的现代侵蚀速率的季节变化非常明显,雨季侵蚀总量占全年侵蚀总量的85%-97%,不同气候区现代侵蚀速率的季节变化也略有不同。
现代侵蚀速率在龙门山地区表现出非常明显的空间不均匀性,龙门山断裂带
附近的地区,高现代侵蚀速率呈现条带性分布,平均现代侵蚀速率都大于
0.3mm/yr,而在龙门山断裂带的两侧,现代侵蚀速率向两侧逐渐递减,进入高原内部现代侵蚀速率迅速递减到0.05 mm/yr,同样进入四川盆地内现代侵蚀速率也是迅速递减到0.15 mm/yr 左右,表现出现代侵蚀速率空间分布于活动构造分布之间的耦合关系,同时,现代侵蚀速率空间分布规律表现出与坡度、地形起伏之间耦合关系,与高程相关性较小,高原残留面内或残留面周围,地形起伏平坦,坡度很小,地表侵蚀非常低,平均现代侵蚀速率小于0.1mm/yr;而在高原边缘地区,平均海拔并没有高原内部高,但是地形起伏很大,坡度很陡,地表现代侵蚀速率非常大,平均现代侵蚀速率大于0.4mm/yr;进入四川盆地内部,高程很低,平均海拔只有500m 左右,地形起伏平坦,坡度也很小,现代侵蚀速率处于高原内部与高原边缘之间,平均现代侵蚀速率0.15- 0.3 mm/yr 左右。这种现代侵蚀速率空间分布规律表现出与宇宙成因核素方法的计算结果基本一致,但是低于低温热年代学的推算结果,这可能与这几种方法计算时间尺度上的差异有关,该方法与宇宙成因核素方法计算时间尺度较短,忽略了大的构造活动的影响,例如大的地震作用,而低温热年代学包含大的地震的滑坡效应对现代侵蚀速率的影响,另外由于低温热年代学是单点岩石测量数据的外推,可能高估了区域的现代侵蚀速率。
同时结合降水事件与地震滑坡事件时间上的耦合关系,通过对现代侵蚀速
率与地震滑坡事件空间分布规律的研究我们发现,作为侵蚀作用的一种物质来
源,滑坡事件与地貌特征、构造活动有着与现代侵蚀速率同样的耦合关系,因此,我们计算的现代侵蚀速率虽然没有特别突出特殊事件对现代侵蚀速率的影响,但是从空间分布特征上看,特殊事件对现代侵蚀速率的空间分布特征的影响是可以忽略的。

最后我们认为龙门山地区高地形梯度的快速地貌转变特征可能是由于构造活动和地表侵蚀作用及岩石圈均衡反弹弥补共同作用的结果,使得龙门山高原边
界上高地形起伏,高原后缘则维持高地形、低起伏的地貌特征。

Other Abstract

There are some distinct characters from other regions on topographic character and interior structure of crust in eastern Tibetan Plateau, so in order to research
processes and mechanisms of the Tibetan Plateau peculiar topography formation, and
the relation between uplift of the plateau with topography formation, and the response
relationship between the surface processes and topography landscape, climate change,
activity tectonic. So we choose Longmenshan region in the southeast edge of the
Tibetan Plateau as research objects, base on the SRTM DEM and GTOPO 30 DEM
data to quantify the topography characters, analyze the hydrological data, and quantify
the surface modern erosion rates in every drainage basins of this area, integrate the
stratum character and the precipitation distribution information, to explore the
response and feedback between surface processes and uplift, climate change under the
special topography of eastern Tibetan plateau, and to conclude that the active tectonics
are strong constrain to the spatial distribution of modern erosion rates in eastern of
Tibet Plateau base on geomorphic characteristics and drainage patterns, that is active
tectonics 􀃆 tectonic uplift ( the difference uplift between two sides of active tectonics)
􀃆 elevation difference 􀃆 Gravitational potential energy 􀃆 high modern erosion rates.
This thesis draws conclusions as following:
There are similarity characteristics between time series of modern erosion rates
with inter-annual charge, but there are some differences in different climate zones. At
the same time, the seasonal variation of erosion rate is very obvious in all Hydrometric
Stations, the erosion during the rainy season accounted for 85% -97% of the total
erosion, and there are some differences in different climatic zones.
Modern erosion rates from several decades of hydrological station data in
Longmenshan mountain area place important constraints on the surface processes of
special topography at the margin of the eastern Tibetan Plateau. The data show that
modern erosion rates are characterized by great heterogeneity in this drainage basin:
in the interior of the Plateau, modern erosion rates are relatively low (<0.1mm/yr). In
the margin of the Plateau, modern erosion rates are very high (>0.3mm/yr). In the
alluvial plain (Sichuan basin), modern erosion rates are between 0.15 to 0.3mm/yr. we
found that distribution of high modern erosion rates is zonal along Longmenshan
region, and the erosion rate be gradually decreased on both sides of the Longmenshan
Mountains faults. And we can find that there are tremendous similar in spatial
distribution between hydrological calculated method and Cosmogenic Be-10 and Al-26,
but lower than low-temperature thermochronology, it may be owing to the defference of
time scale among these methods, the time scale is short in hydrological calculated
method and Cosmogenic Be-10 and Al-26, it may be neglected the effection of the
large tectonic activity, e.g. large earthquake, but low-temperature thermochronology
calculated the effection of the large tectonic activity, in addation, it may be
overestimate the modern erosion rates because it was extrapolated based on some
single-point measurement results.
Interaction between modern erosion rates, landscape evolution, climate change
and tectonic activity shows that tectonic activity plays an important role in affecting
modern erosion rates; climate change is not the dominant factor; the spatial trend
between the modern erosion rates and the topography characteristics is significantly
similar.
At the same time, we found that coupling relationship among landslide events of
the earthquake, landscape characteristics and tectonic activities was similar to erosion
rate, so we didn’t highlight the special events effect to erosion rate.
In the end, we conclude that the special topography characters are mostly due to
tectonic activity and surface erosion and its flexural isostatic compensation of the
mass removed in the margin of the eastern Tibetan Plateau. It makes the high relief in
margin of Plateau, and high elevation, low relief in interior of Plateau.

Department大陆碰撞与高原隆升重点实验室
Subject Area构造地质学
MOST Discipline Catalogue理学::地质学
Table of Contents

摘 要..................................................................................................................................... I
第一章 绪论.....................................................................................................................................1
1.1 研究目的与意义....................................................................................................................1
1.2 国内外研究进展与现状........................................................................................................3
1.2.1 青藏高原的形成、演化机制研究现状与进展....................................................................3
1.2.1.1 青藏高原的形成机理研究.................................................................................................4
1.2.1.2 青藏高原隆升过程研究.....................................................................................................4
1.2.1.3 青藏高原构造变形与隆升机制研究.................................................................................5
1.2.2 地表过程的研究进展............................................................................................................5
1.2.2.1 地表剥蚀作用的研究方法.................................................................................................5
1.2.2.2 青藏高原地区地表过程与气候变化、构造抬升的研究进展.........................................8
第二章 研究区概况与地质背景...................................................................................................15
2.1 研究区概况..........................................................................................................................15
2.2 研究区内主要的地层与断裂..............................................................................................18
第三章 数据来源与分析方法以及误差矫正...............................................................................22
3.1 数据......................................................................................................................................22
3.1.1 水文数据..............................................................................................................................22
3.1.2 地理数据..............................................................................................................................29
3.1.3 气象数据..............................................................................................................................29
3.2 方法......................................................................................................................................31
3.3 水文参数的校正分析..........................................................................................................32
3.3.1 原始水文参数测量..............................................................................................................32
3.3.2 基于DEM(数字高程模型)的水文参数的计算............................................................34
3.4 误差来源分析......................................................................................................................35
第四章 河流侵蚀作用的时空分布特征以及特殊事件的影响...................................................37
4.1 龙门山地区地表现代侵蚀速率时空分布规律..................................................................37
4.1.1 龙门山地区地表现代侵蚀速率时间变化规律..................................................................37
4.1.2 龙门山地区地表现代侵蚀速率空间变化规律...............................................................52
4.2 5.12 汶川大地震山体滑坡事件与地貌特征、构造活动、现代侵蚀速率空间分布的耦
合关系.........................................................................................................................................56
4.2.1 5.12 汶川大地震引起的地质灾害评估...............................................................................57
4.2.2 地震山体滑坡事件与地貌特征之间的耦合关系..............................................................61
4.2.3 地震山体滑坡事件与构造活动之间的耦合关系..............................................................67
4.2.4 地震山体滑坡事件与现代侵蚀速率空间分布的耦合关系..............................................69
第五章 河流侵蚀作用与地貌特征、气候变化、构造活动之间的耦合关系...........................73
5.1 河流侵蚀作用与地貌特征之间的耦合关系......................................................................74
5.1.1 地貌特征提取......................................................................................................................74
5.1.2 河流侵蚀作用与地貌特征之间的耦合关系......................................................................74
5.2 河流侵蚀作用与气候变化之间的耦合关系....................................................................78
5.3 河流侵蚀作用与构造活动之间的耦合关系....................................................................80
第六章 河流侵蚀作用与岩石圈均衡反弹模型...........................................................................82
第七章 结论及存在问题与展望...................................................................................................88
致 谢...........................................................................................................................................92
参考文献.........................................................................................................................................93

图表目录
图 1. 1 青藏高原隆升过程示意图及不同隆升观点..............................................................5
图1. 2 根据宇宙成因核素计算长江上游河流的现代侵蚀速率..........................................7
图1. 3 喜马拉雅地区侵蚀与季风加强之间的关系对比....................................................10
图1. 4 龙门山地区岩石圈抬升模型....................................................................................13
图1. 5 青藏高原东缘地区的裂变径迹记录与剥蚀速率分布............................................13
图2. 1 研究区概图及水电站、天然湖泊分布....................................................................16
图2. 2 研究区多年平均降水空间分布图............................................................................17
图2. 3 龙门山地区地质与构造分布图................................................................................19
图3. 1 中国1981 年以来电力建设情况分布图..................................................................23
图3. 2 长江流域大型水电站分布图....................................................................................23
图3. 3 龚嘴水库对下游泥沙输移和流量的影响................................................................24
图3. 4 龙门山地区主要水电站与大坝................................................................................25
图3. 5 龙门山地区主要天然湖泊........................................................................................26
图3. 6 龙门山地区水文站位置分布....................................................................................28
图3. 7 龙门山地区气象降水站分布图................................................................................30
图3. 8 河流水文站分布以及流域面积计算示意图............................................................32
图3. 9 机械求积仪与数字求积仪KP-21C 简图.................................................................33
图3. 10 各站点原始集水面积与计算得出的集水面积的比较..........................................34
图4. 1 研究区年平均降水分布与水文站分布....................................................................38
图4. 2 高原内部区各站点现代侵蚀速率与流量年际变化规律........................................39
图4. 3 高原内部区各站点现代侵蚀速率与流量关系........................................................40
图4. 4 高原边界区各站点现代侵蚀速率与流量年际变化规律........................................41
图 4. 5 高原边界区各站点现代侵蚀速率与流量关系.......................................................42
图4. 6 平原区各站点现代侵蚀速率与流量年际变化规律................................................43
图4. 7 平原区各站点现代侵蚀速率与流量关系................................................................44
图4. 8 强降水区各站点现代侵蚀速率与流量年际变化规律............................................45
图 4. 9 强降水区各站点现代侵蚀速率与流量关系...........................................................45
图4. 10 夏季季风分布模式..................................................................................................47
图4. 11 高原内部区站点泥沙输移与流量季节变化..........................................................48
图4. 12 高原边界区站点泥沙输移与流量季节变化..........................................................49
图4. 13 平原区站点泥沙输移与流量季节变化..................................................................50
图4. 14 强降水区站点泥沙输移与流量季节变化..............................................................51
图 4. 15 研究区各气象站降水季节变化.............................................................................52
图 4. 16 龙门山地区现代侵蚀速率空间分布.....................................................................54
图4. 17 插值处理后龙门山地区现代侵蚀速率空间分布..................................................54
图4. 18 龙门山地区现代侵蚀速率不同方法计算结果......................................................55
图4. 19 汶川地震引起的地震滑坡分布对比(栅格数据域点数据对比) ......................57
图 4. 20 汶川地震引起的地震滑坡遥感影像.....................................................................58
图4. 21 映秀县城滑坡与地震破坏......................................................................................59
图4. 22 北川县城滑坡与地震破坏......................................................................................59
图 4. 23 地震山体滑坡空间分布.........................................................................................62
图4. 24 地震山体滑坡区地形起伏度空间分布..................................................................62
图4. 25 地震山体滑坡区地表坡度空间分布......................................................................63
图4. 26 Ⅰ类滑坡区域地貌指标分布..................................................................................64
图4. 27 Ⅱ类滑坡区域地貌指标分布..................................................................................64
图 4. 28 Ⅲ类滑坡区域地貌指标分布.................................................................................65
图4. 29 Ⅳ类滑坡区域地貌指标分布..................................................................................65
图4. 30 地震滑坡各分区地貌指标关系..............................................................................66
图4. 31 地震山体滑坡与活动构造分布..............................................................................68
图4. 32 汶川地震地表破裂同震位错滑坡密度分布..........................................................69
图4. 33 地震滑坡区地表现代侵蚀速率空间分布..............................................................71
图4. 34 地震山体滑坡区地表现代侵蚀速率空间分布(插值处理后) ..........................71
图5. 1 研究区地貌特征分布及残留面分布........................................................................75
图5. 2 剖面1, 2 高程变化趋势图,粗阴影线表示高原残留面的分布............................76
图5. 3 研究区现代侵蚀速率空间分布与高原残留面分布................................................77
图5. 4 研究区现代侵蚀速率、高程、坡度、地形起伏剖面图........................................78
图5. 5 研究区多年平均降水空间分布图............................................................................79
图5. 6 研究区现代侵蚀速率、降水量剖面图....................................................................79
图5. 7 龙门山地区地质图与活动构造分布........................................................................81
图5. 8 研究区现代侵蚀速率、地层剖面图........................................................................81
图6. 1 艾里模型岩石圈均衡反弹示意图............................................................................83
图6. 2 有效弹性厚度Te 模拟计算......................................................................................84
图6. 3 弹性挠曲计算模型示意图........................................................................................85
图6. 4 岩石圈弹性挠曲反弹模拟示意图............................................................................86
图6. 5 龙门山地区三维地貌图............................................................................................87

Pages105页
URL查看原文
Language中文
Document Type学位论文
Identifierhttp://ir.itpcas.ac.cn/handle/131C11/8462
Collection图书馆
Recommended Citation
GB/T 7714
文力. 青藏高原东缘龙门山地区现代侵蚀速率时空分 布规律及其构造地貌学意义[D]. 北京. 中国科学院研究生院,2009.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[文力]'s Articles
Baidu academic
Similar articles in Baidu academic
[文力]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[文力]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.