Greening Implication Inferred from Vegetation Dynamics Interacted with Climate Change and Human Activities over the Southeast Qinghai-Tibet Plateau | |
Li, H (Li, Hao)1,2; Liu, L (Liu, Liu)1,2; Liu, XC (Liu, Xingcai)3; Li, XP (Li, Xiuping)4; Xu, ZX (Xu, Zongxue)5,6 | |
Source Publication | REMOTE SENSING |
2019 | |
Volume | 11Issue:20Pages:2421 |
DOI | 10.3390/rs11202421 |
Abstract | Vegetation dynamics are sensitive to climate change and human activities, as vegetation interacts with the hydrosphere, atmosphere, and biosphere. The Yarlung Zangbo River (YZR) basin, with the vulnerable ecological environment, has experienced a series of natural disasters since the new millennium. Therefore, in this study, the vegetation dynamic variations and their associated responses to environmental changes in the YZR basin were investigated based on Normalized Difference Vegetation Index (NDVI) and Global Land Data Assimilation System (GLDAS) data from 2000 to 2016. Results showed that (1) the YZR basin showed an obvious vegetation greening process with a significant increase of the growing season NDVI (Z(c) = 2.31, p < 0.05), which was mainly attributed to the wide greening tendency of the downstream region that accounted for over 50% area of the YZR basin. (2) Regions with significant greening accounted for 25.4% of the basin and were mainly concentrated in the Nyang River and Parlung Tsangpo River sub-basins. On the contrary, the browning regions accounted for <25% of the basin and were mostly distributed in the urbanized cities of the midstream, implying a significant influence of human activities on vegetation greening. (3) The elevation dependency of the vegetation in the YZR basin was significant, showing that the vegetation of the low-altitude regions was better than that of the high-altitude regions. The greening rate exhibited a significantly more complicated relationship with the elevation, which increased with elevated altitude (above 3500 m) and decreased with elevated altitude (below 3500 m). (4) Significantly positive correlations between the growing season NDVI and surface air temperature were detected, which were mainly distributed in the snow-dominated sub-basins, indicating that glaciers and snow melting processes induced by global warming play an important role in vegetation growth. Although basin-wide non-significant negative correlations were found between precipitation and growing season NDVI, positive influences of precipitation on vegetation greening occurred in the arid and semi-arid upstream region. These findings could provide important information for ecological environment protection in the YZR basin and other high mountain regions. |
Subject Area | Remote Sensing |
WOS ID | WOS:000498395800089 |
Language | 英语 |
Indexed By | SCI |
Keyword | Zangbo River-basin Soil-moisture Spatiotemporal Variation Satellite-observations Spatial Heterogeneity Underlying Mechanisms Driving Forces Energy-balance Water-balance Land-cover |
WOS Research Area | Remote Sensing |
WOS Subject | Remote Sensing |
Cooperation Status | 国内 |
Department | 环境变化与地表过程重点实验室 |
URL | 查看原文 |
Publisher | MDPI |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.itpcas.ac.cn/handle/131C11/9133 |
Collection | 图书馆 |
Corresponding Author | Liu, L (Liu, Liu) |
Affiliation | 1.China Agr Univ, Coll Water Resources & Civil Engn, Beijing 100083, Peoples R China; 2.China Agr Univ, Ctr Agr Water Res China, Beijing 100083, Peoples R China; 3.Chinese Acad China, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China; 4.Chinese Acad China, Inst Tibetan Plateau Res, Beijing 100101, Peoples R China; 5.Beijing Normal Univ, Coll Water Sci, Beijing 100875, Peoples R China; 6.Beijing Key Lab Urban Hydrol Cycle & Sponge City, Beijing 100875, Peoples R China. |
Recommended Citation GB/T 7714 | Li, H ,Liu, L ,Liu, XC ,et al. Greening Implication Inferred from Vegetation Dynamics Interacted with Climate Change and Human Activities over the Southeast Qinghai-Tibet Plateau[J]. REMOTE SENSING,2019,11(20):2421. |
APA | Li, H ,Liu, L ,Liu, XC ,Li, XP ,&Xu, ZX .(2019).Greening Implication Inferred from Vegetation Dynamics Interacted with Climate Change and Human Activities over the Southeast Qinghai-Tibet Plateau.REMOTE SENSING,11(20),2421. |
MLA | Li, H ,et al."Greening Implication Inferred from Vegetation Dynamics Interacted with Climate Change and Human Activities over the Southeast Qinghai-Tibet Plateau".REMOTE SENSING 11.20(2019):2421. |
Files in This Item: | ||||||
File Name/Size | DocType | Version | Access | License | ||
2019100.pdf(2339KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | View Application Full Text |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment