| 青藏高原腹地令戈错冰水湖泊地貌发育与环境演化研究 |
| 陈华亮
|
Subtype | 博士
|
Thesis Advisor | 易朝路
|
| 2009-07
|
Degree Grantor | 中国科学院研究生院
|
Place of Conferral | 北京
|
Degree Name | 博士研究生
|
Degree Discipline | 自然地理学
|
Keyword | 令戈错
湖泊阶地
gps测线测量
地貌
西藏
湖面波动
全新世
|
Call Number | B000017
|
Abstract | 青藏高原内陆湖泊是气候变化敏感的指示器,开展青藏高原湖泊的研究,对研究全球气候变化和可持续发展具有重要的意义。本论文通过青藏高原腹地令戈错湖泊地貌和沉积物的研究,恢复古湖面的升降和古气候的演化,以探明这一地区冰水湖泊地貌与环境演化的关系,明确羌塘高原内流区湖泊演化与古环境变化的规律,并为预测这一地区未来环境发展趋势提供参考依据。令戈错(东湖)位于青藏羌塘高原的东北部,普若岗日冰原以西。气候寒冷、干旱,地面盛行西风,降水集中分布于6-8月,蒸发量约是降水量的6倍。本论文采用差分GPS测量和遥感影像分析相结合的方法,精确测量了令戈错各级湖岸堤的高程;通过OSL定年技术对湖滨沉积物进行年代测定,并结合湖滨沉积物的粒度代用指标分析,重建湖泊演化的时空分布格局和环境变化历史。本论文得到以下主要结论和认识: 1、野外考察发现,在令戈错湖周围存在湖岸阶地、砂坝--泻湖类湖岸堤;湖西岸存在河流三角洲;湖东南还存在呈NW-SE向的古沙嘴,拔湖高度介于5033-5150 m。 2、上述阶地、沙嘴和湖岸堤的沉积物主要由磨圆度和分选性较好的砂或砂砾石组成。这些发育的湖岸堤、湖滨侵蚀地貌和湖滨沉积是令戈错湖存在和演化的重要证据。 3、通过OSL测年结果显示:令戈错在拔湖50-55m的湖泊阶地OSL测年结果,拔湖34-38m湖泊阶地相当的冰水河流阶地OSL测年结果,发现了令戈错湖距今6ka和2.8 ka的两次湖涨期,湖泊面积分别为371km2和244km2,分别是现在湖泊面积的4倍和2.5倍。拔湖90-100m的湖泊阶地,分布普遍,时代可能与末次冰期晚阶段相当。表明当时的冰消过程有利于冰水河流的发育,从而形成广泛出现的阶地。 4、冰水河流OSL年代为14.1kaB.P.,表明在此时期普若岗日冰川大量融化,河流与湖泊水位上涨,气候为较温暖的冰消期。 5、粒度分析表明,从冰水河流一直往湖泊,粒度特征正好与河流地貌特征和湖泊地貌特征一致。 |
Other Abstract | Inland lakes on the Tibet Plateau are sensitive indicators for climate change, making the studies of these lakes’ variations critical to global climatic change and sustainable development discussion and strategy. This thesis uses lake geomorphology and sediment from LinggeCo to reconstruct ancient lake levels and climatic evolution and explore the relationship of glacial lake geomorphology and environmental change. Additionally, this thesis explores the causal relationship between lake change and ancient environmental change, to offer evidence for the environmental development direction. The LinggeCo (East Lake) lies in Northeast Qiantang Plateau, West of the Puruogangri ice field in the inner Tibet plateau. The climate is cold and arid with the majority of precipitation occurring between June and August. Annual evaporation is 6 times more than annual precipitation. Westerly winds prevail with the exception of July when there is a reversal. This thesis uses GPS to measure the elevation of the terrace. We confirmed the age by OSL dating methods, and used lake sediment granularity analyses to reconstruct the pattern of the space-time development and the environmental change history. All conclusions are as follows: 1. During field work we found sand –lagune terraces, and a sand spit on the west lakeshore makes for the NW-SE ancient sand spit in the southeast,at an altitude between 5033 -5150 m. 2. The land spit and lake terrace are formed by the sand and grit which have good polish and select. These well develope terraces and eroded lake features can prove the development of the Linggecuo. 3. The terraces of Linggecuo are 50-55m and 34-38m above the current lake level. We found two fluctuations at 6. ka and 2.8 ka, by OSL dating, with the areas 371km2and 244km2, and the 4 and 2.5times larger than today, respectively. It is common to find terraces at 90-100m above the lake level. This indicates that there was once a larger lake, corresponding to the late phase of last glacial stage. 4.Glacial river’s age was about 14.1ka B.P. dating by OSL,it was indicated that the Puruogangri ice field have vast meltd, the lake and river’s level rised, it’s interglacial with warm climate. 5. Grain size analyses indicate that the grain size characteristics are consistent with the lake and river features from the glacial river to the lake. |
Department | 环境变化与地表过程重点实验室
|
Subject Area | 自然地理学
|
MOST Discipline Catalogue | 理学::地理学
|
Table of Contents | 青藏高原腹地令戈错冰水湖泊地貌发育与环境演化研究....................i
摘 要..............................................................I
目 录............................................................III
图目录..............................................................V
表目录.............................................................VI
1 绪论..............................................................7
2 青藏高原湖泊的形成与演化研究.....................................12
2.1 青藏高原湖泊的形成.........................................12
2.1.1 构造成因.............................................12
2.1.2 冰川湖和堰塞湖.......................................15
2.2 青藏高原湖泊的演化研究.....................................16
2.2.1 青藏高原湖泊演化的地貌学研究.........................16
2.2.2 青藏高原湖泊演化的沉积学研究.........................15
2.3 论文选题依据及拟解决的科学问题.............................22
2.3.1 论文选题依据.........................................22
2.3.2 拟解决的科学问题.....................................22
3 研究区域概况....................................................23
3.1 构造特征..................................................23
3.2 气候特征..................................................25
3.3 地貌特征...................................................25
3.3.1 普若岗日冰川及其变化.................................25
3.3.2 冰碛地貌.............................................26
3.3.3 风沙地貌.............................................27
3.3.4 湖泊地貌.............................................27
4 研究方法........................................................28
4.1 年代学研究.................................................28
4.1.1 样品的采集:.........................................28
4.1.2 释光测年的原理.......................................29
4.2 湖泊阶地测量...............................................30
4.2.1 GPS 定位技术的由来及发展............................30
4.2.2 GPS 系统的组成......................................31
4.2.3 E650 系统主要配置及使用.............................32
4.2.4 测量数据处理方法....................................33
4.3 粒度分析..................................................33
4.3.1 粒度实验方法.........................................34
4.3.2 粒度分析.............................................35
5 令戈错湖泊演变证据...............................................38
5.1 湖泊演变的地貌特征.........................................38
5.1.1 湖岸地貌.............................................38
5.1.2 河流阶地的地貌特征...................................40
5.2 沉积特征...................................................41
5.2.1 湖滨相沉积记录.......................................41
5.2.2 湖泊阶地沉积记录.....................................42
5.2.3 冰水河流阶地沉积记录.................................44
5.3 粒度实验结果..............................................45
5.4 湖岸阶地差分GPS 测量结果..................................48
5.5 光释光测年结果............................................52
6 令戈错湖泊环境演变...............................................53
6.1 湖泊演变研究的依据.........................................53
6.1.1 令戈错湖东岸湖岸堤...................................54
6.1.2 古沙嘴...............................................55
6.2 全新世湖泊水位变化.........................................55
6.2.1 水汽来源.............................................55
6.2.2 青藏高原其它地区全新世湖泊水位变化...................56
6.2.3 令戈错全新世湖泊水位变化.............................59
7 结论与展望......................................................62
7.1 主要结论..................................................62
7.2 问题与展望................................................62
8 参考文献........................................................63
发表论文...........................................................74
致 谢.............................................................75
图目录
图 1-1 青藏高原主要山脉分布图...................................................... 8
图2-1 高原湖泊分区图............................................................ 13
图2-2 高原湖盆带分布图......................................................... 14
图3-1 研究区位置示意图 图3-2 羌塘盆地构造单元图............................... 23
图3-3 普若岗日冰前风沙地貌分布图................................................ 27
图4-1 光释光和粒度采样点位置图.................................................. 29
图4-2 释光测年的原理........................................................... 30
图4-3 GPS 系统的组成 图4-4 GPS 地面支撑系统 4-5 GPS 用户部分.................... 31
图4-6 E650 主机图................................................................ 32
图4-7 手簿图 图4-8 MobileMapper ............................................... 33
图4-9 MicrotracS3500 激光粒度仪.................................................. 35
图5-1 令戈错湖地貌图............................................................ 38
图5-2 令戈错东岸湖堤 图5-3 东南岸滨岸沙堤...................................... 39
图5-4 古沙嘴砾石................................................................ 40
图5-5 冰水河流阶地采样点PU-R1-2(左)5-6 冰水河流阶地采样点PU-R4(上)位置示意图41
图5-7 临时基站所在湖岸阶地及阶地上的卵石 图5-8 阶地沉积纪录图................... 42
图5-9 样品PU-LE3-1 采样处的阶地地貌 图5-10 样品PU-LE4-1 采样处的阶地地貌...... 43
图5-11 样品 PU-LE6-2 采样处的阶地地貌 图5-12 样品 PU-R1-2 采样处的阶地地貌....... 44
图5-13 样品 PU-R3-1 采样处的阶地地貌 图5-14 样品 PU-R4 采样处的阶地地貌........ 45
图5-15 粒度概率累积曲线图....................................................... 47
图5-16 令戈错GPS 测线图......................................................... 48
图5-17 东岸湖堤测线图 图5-18 令戈错湖东南岸测线............................... 49
图5-19 令戈错湖东南岸沙嘴测线 图5-20 令戈错湖西岸测线图........................ 50
图5-21 令戈错湖南岸测线图 图5-22 令戈错湖北岸测线图.......................... 51
图5-23 光释光图谱............................................................... 52
图6-1 不同湖泊水位面积图......................................................... 59
表目录
表1-1 青藏高原面积大于1km2 不同类型的湖泊统表..................................... 9
表1-2 青藏高原面积大于10km2 不同类型湖泊统计...................................... 9
表1-3 青藏高原面积1~10km2 不同类型湖泊统计........................................ 9
表1-4 青藏高原大湖期研究........................................................ 11
表2-1 高原湖泊分布特征表....................................................... 13
表3-1 羌塘盆地地层与盆地演化简表................................................ 24
表3-2 6 号冰川前冰碛垄系列特征................................................. 26
表4-1 光释光年代学样品......................................................... 28
表5-1 沉积编号................................................................. 42
表5-2 粒度参数表............................................................... 46
表5-3 湖泊砂OSL 年代........................................................... 52
表6-1 令戈错湖泊阶地........................................................... 59
表6-2 全新世以来三个阶段的古湖泊水位、面积和时代............................... 60 |
Pages | 75 页
|
URL | 查看原文
|
Language | 中文
|
Document Type | 学位论文
|
Identifier | http://ir.itpcas.ac.cn/handle/131C11/1233
|
Collection | 图书馆
|
Recommended Citation GB/T 7714 |
陈华亮. 青藏高原腹地令戈错冰水湖泊地貌发育与环境演化研究[D]. 北京. 中国科学院研究生院,2009.
|
Files in This Item: |
|
There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment