Other Abstract | The Selin Co basin in the northern Lhasa terrane includes more than 3000 m of
upward-coarsening Lower Cretaceous strata. The lowermost part, the Eshaerbu Formation,
consists of dark mudstone and turbiditic sandstone. The conformably overlying Duoni Formation
consists of a lower member of interbedded lithic sandstone, siltstone and mudstone,and an upper
member of conglomerate, coarse sandstone, red mudstone, volcaniclastic rocks, and rhyolitic tuff.
A zircon sample from the rhyolite yields a U-Pb age of 125.8 ±2.8 Ma. The Duoni Formation is
unconformably overlain by rudist-bearing and orbitolinid limestone of the Late Aptian–Early
Albian Langshan Formation.
In the Q-F-L diagrams, most of sandstones fall into the recycled orogen and magmatic arc.
435 detrital zircon uranium-lead (U-Pb) ages determined from the Lower Cretaceous strata show
that zircon grains were primarily derived from the Gangdese magmatic arc and the
Carboniferous strata to the south. The geochemical analyses, including major elments, trace
elements, rare earth elements (REE) and Nd isotope, indicate that the Lower Cretaceous strata in
the Selin Co basin were mainly derived from an Andean-type active continental margin with its
compositional characteristics of the Upper crust, which may consist of Paleozoic strata and
igneous rocks and the latter were probably produced by the melting of the thickened Upper crust.
Combined with part of major and trace elements, Cr-spinel analysis suggests that basic-ultrabasic
rocks could be another subordinate material source. Based on the results of different provenance
analyses, we conclude that during Early Cretaceous the Selin Co basin was an Andean-type
retroarc foreland basin with its primary provenance of Gangdese magmatic arc and Paleozoic
strata to the south and its secondary provenance of BNS and Qiangtang terrane to the north. The
youngest zircon ages in the lowermost exposure of the Eshaerbru Formation are ~130 Ma and
provide a maximum depositional age for the Selin Co basin.
During the period of ~140-90 Ma, a retroarc fold and thrust belts and foreland basin system
had been developed in the Lhasa terrane and deposited the Chumulong Formation, the Eshaerbu
Formation, the Duoni Formation, the Langshan Formation, the Takana Fromation and the
Jingzhushan Formation orderly. The presences of Early Cretaceous thrusting and foreland basin
system suggest that crustal thickening in the Lhasa terrane likely initiated during the Early
Cretaceous. |
Table of Contents | 摘 要 ..............................................................I
目 录 ............................................................III
图目录 ..............................................................V
表目录 ............................................................VII
1 绪论 ..............................................................1
1.1 选题依据和意义 ..............................................1
1.2 研究思路、内容和技术路线 ....................................1
1.3 论文工作量 ..................................................2
1.4 创新点 ......................................................3
2 物源分析的主要方法和前陆盆地研究进展 ..............................4
2.1 物源分析的主要方法 ..........................................4
2.1.1 岩石学和重矿物分析 ....................................5
2.1.2 全岩地球化学 .........................................10
2.1.3 碎屑矿物的同位素年代学 ...............................16
2.2 前陆盆地的研究进展 .........................................17
2.2.1 前陆盆地的来源和分类 .................................17
2.2.2 前陆盆地的形成模式 ...................................19
2.2.3 前陆盆地的地层记录 ...................................20
2.2.4 前陆盆地的演化阶段 ...................................23
3 研究区地质背景 ...................................................27
3.1 班公湖-怒江缝合带 .........................................27
3.2 古生代-中生代沉积地层 .....................................28
3.3 冈底斯火成岩带 .............................................28
3.4 色林错盆地的边界断层 .......................................34
4 色林错盆地下白垩统地层的时代和沉积记录 ...........................35
4.1 古生物地层年代 .............................................35
4.1.1 日拉组 ...............................................36
4.1.2 郎山组 ...............................................36
4.2 沉积地层 ...................................................38
4.2.1 格仁错地区 ...........................................38
4.2.2 多巴地区 .............................................42
4.2.3 马跃地区 .............................................43
5 色林错盆地早白垩世物源分析 .......................................45
5.1 砂岩骨架颗粒统计 ...........................................45
5.1.1 格仁错地区 ...........................................45
5.1.2 多巴地区 .............................................45
5.1.3 马跃地区 .............................................48
5.2 铬尖晶石电子探针分析 .......................................48
5.3 碎屑锆石U–Pb 年代学分析 ....................................52
5.3.1 实验方法 .............................................52
5.3.2 实验结果 .............................................53
5.3.3 碎屑锆石的物源 .......................................59
5.4 泥岩地球化学分析 ...........................................62
5.4.1 主量元素 .............................................62
5.4.2 稀土和微量元素 .......................................67
5.4.3 Nd 同位素 ............................................68
5.5 物源分析小结 ...............................................72
6 早白垩世色林错盆地的构造演化及弧背前陆盆地系统 ..................104
6.1 色林错地区的早白垩世古地理 ................................104
6.2 早白垩世色林错盆地的构造背景和盆地演化 ....................106
6.3 拉萨地块早白垩世弧背前陆盆地系统 ..........................106
7 结论 ............................................................109
参考文献 ..........................................................110
附录1 ............................................................119
致 谢 ............................................................120
图目录
图 1-1 技术路线简图 .......................................................................................................... 2
图 2-1 影响沉积物组分的各种物理化学过程 (Morton and Hallsworth,1999) ...... 4
图 2-2 砂岩物源类型三角判别图 (Dickinson and Suczek,1979) ............................ 5
图 2-3 不同构造背景下火山岩和橄榄岩中尖晶石的Cr#分布 (Lee,1999) ........... 9
图 2-4 尖晶石物源判别图 (Lenaz 等,2000) ........................................................... 10
图 2-5 不同构造背景下尖晶石的组分关系图 (Kamenetsky 等,2001) ................. 10
图 2-6 A-CN-K 三角图(Nesbitt and Young,1984) ................................................... 11
图 2-7 碎屑岩的构造背景判别函数图 (Bhatia,1983) ........................................... 13
图 2-8 微量元素大地构造背景判别图 (Bhatia and Crook,1996) ......................... 14
图 2-9 不同环境中现代沉积物的εNd-Th/Sc 图 (McLennan 等,1993) ............. 15
图 2-10 传统的前陆盆地示意图 (DeCelles and Giles,1996) ................................. 17
图 2-11 前陆盆地划分方案 (Dickinson,1974) ....................................................... 18
图 2-12 背驮式盆地 (Ori and Friend,1984) ............................................................ 18
图 2-13 前陆盆地系统剖面图 (DeCelles and Giles,1996) ..................................... 19
图 2-14 不同流变模型下的地层响应 (Flemings and Jordan,1990) ...................... 19
图 2-15 弹性流变模式下的前陆盆地地层格架 (Flemings and Jordan,1990) ...... 20
图 2-16 前陆盆地近端和远端沉积序列的对比和解释 (Heller,1988) .................. 21
图 2-17 前陆盆地内冲断期的楔状地层和平静期的席状地层 (Heller,1988) ...... 21
图 2-18 前陆盆地内前缘带隆起迁移产生不整合面的过程 (White, 2002) ............ 22
图 2-19 龙门山前陆盆地内的不整合面 (Li 等,2003) ........................................... 23
图 2-20 前陆盆地演化阶段 (Sinclair,1997) ........................................................... 25
图 3-1 拉萨地块地质简图 ................................................................................................ 30
图 3-2 古生代-中生代青藏高原地质演化历史 (Yin and Harrison,2000) ............. 31
图 3-3 冈底斯岛弧带内火成岩的分布 (Zhu 等,2008) .......................................... 32
图 3-4 色林错盆地地质图 ................................................................................................ 33
图 4-1 格仁错地区冰雪融水侵蚀的下白垩统地层 (google earth) .......................... 35
图 4-2 圆笠虫随时间的演化特征 (Cherchi and Schroeder) ..................................... 36
图 4-3 郎山组灰岩中的圆笠虫 ........................................................................................ 37
图 4-4 色林错盆地下白垩统地层野外照片 .................................................................... 39
图 4-5 格仁错剖面地层柱状图 ........................................................................................ 41
图 4-6 多巴地区地层剖面柱状图 .................................................................................... 43
图 4-7 地层柱状图的图例 ................................................................................................ 44
图 5-1 砂岩骨架颗粒成分三角图 .................................................................................... 47
图 5-2 尖晶石Cr-Al-Fe3+成分三角图(Barnes and Roeder,2001) ........................... 48
图 5-3 尖晶石Cr#~Fe2+/(Mg+Fe2+)判别图(Barnes and Roeder,2001) ............. 49
图 5-4 尖晶石TiO2(wt%)~Al2O3(wt%)判别图(Kamenetsky 等,2001)........ 50
图 5-5 尖晶石Fe2+/Fe3+~Al2O3(wt%)判别图(Kamenetsky 等,2001) ................ 51
图 5-6 尖晶石TiO2(wt%)~Cr#判别图(Arai,1992) ............................................ 52
图 5-7 样品Z68 锆石U-Pb 年龄频率分布图 ................................................................. 53
图 5-8 样品Z48 锆石U-Pb 年龄谐和图 ......................................................................... 54
图 5-9 格仁错地区俄杀而补组碎屑锆石U-Pb 年龄频率分布图 ................................. 56
图 5-10 格仁错地区多尼组碎屑锆石U-Pb 年龄频率分布图 ....................................... 57
图 5-11 多巴地区多尼组碎屑锆石U-Pb 年龄频率分布图 ........................................... 58
图 5-12 马跃地区多尼组碎屑锆石U-Pb 年龄频率分布图 ........................................... 59
图 5-13 色林错盆地下白垩统砂岩中碎屑锆石年龄概率分布图 .................................. 60
图 5-14 青藏高原内100-300 Ma 的锆石来源 ................................................................ 60
图 5-15 石炭系砂岩和下白垩统砂岩碎屑锆石U-Pb 年龄(>500 Ma)对比 ............ 61
图 5-16 A-CN-K 图解(Nesbitt and Young,1984) ..................................................... 62
图 5-17 上地壳标准化泥岩成分蛛网图(Taylor et al., 1981) .......................................... 63
图 5-18 物源区岩石类型主量元素判别图(Roser and Korsch,1986) ..................... 64
图 5-19 K2O/Na2O~SiO2 判别图(Roser and Korsch,1986) ..................................... 65
图 5-20 (Fe2O3+MgO)~Al2O3/SiO2 和(Fe2O3+MgO)~TiO2 判别图(Bhatia,1983)
....................................................................................................................................... 66
图 5-21 主量元素判别图(Bhatia,1983) ................................................................... 66
图 5-22 微量元素判别图(Bhatia and Crook,1986) ................................................. 67
图 5-23 澳大利亚页岩标准化(McLennan, 1989) 和球粒陨石标准化(Boynton,
1984)REE 配分曲线图 ................................................................................................. 68
图 5-24 冈底斯岛弧花岗岩εNd(t)-87Sr/86Sr(t)图(莫宣学等,2005,有修改)
....................................................................................................................................... 70
图 5-25 古生界和中生界沉积岩εNd(t)值分布图 .................................................... 71
图 5-26 色林错盆地泥岩的εNd-Th/Sc 图解 ................................................................. 72
图 6-1 样品Z06 最年轻一组锆石的平均U-Pb 年龄 ................................................... 104
图 6-2 色林错地区早白垩世古地理 .............................................................................. 105
图 6-3 早白垩世拉萨地块上发育的弧背前陆盆地系统 .............................................. 108
表目录
表格 1-1 论文主要工作量统计 .......................................................................................... 2
表格 2-1 常见重矿物组合及其母岩类型 (刘宝珺和曾允孚,1985) ........................ 7
表格 2-2 不同构造背景下砂岩的平均化学组分 (Bhatia,1983) .............................. 12
表格 3-1 色林错地区区域地层对比 ................................................................................ 28
表格 5-1 砂岩骨架颗粒统计表 ........................................................................................ 46
表格 5-2 格仁错地区K1e 砂岩中铬尖晶石电子探针分析(wt%) ............................ 73
表格 5-3 格仁错地区K1d 砂岩中铬尖晶石电子探针分析(wt%) ............................ 75
表格 5-4 多巴地区K1d 砂岩中铬尖晶石电子探针分析(wt%) ................................ 76
表格 5-5 马跃地区K1d 砂岩中铬尖晶石电子探针分析(wt%) ................................ 77
表格 5-6 样品Z68 锆石U-Pb 同位素分析数据 ............................................................. 78
表格 5-7 样品Z48 锆石U-Pb 同位素分析数据 ............................................................. 79
表格 5-8 样品Z06 锆石U-Pb 同位素分析数据 ............................................................. 80
表格 5-9 样品Z83 锆石U-Pb 同位素分析数据 ............................................................. 82
表格 5-10 样品Z76 锆石U-Pb 同位素分析数据 ........................................................... 84
表格 5-11 样品Z64 锆石U-Pb 同位素分析数据 ........................................................... 86
表格 5-12 样品Z44 锆石U-Pb 同位素分析数据 ........................................................... 88
表格 5-13 样品Z29 锆石U-Pb 同位素分析数据 ........................................................... 90
表格 5-14 样品Z169 锆石U-Pb 同位素分析数据 ......................................................... 92
表格 5-15 样品Z166 锆石U-Pb 同位素分析数据 ......................................................... 94
表格 5-16 样品Z174 锆石U-Pb 同位素分析数据 ......................................................... 96
表格 5-17 样品T153 锆石U-Pb 同位素分析数据 ......................................................... 98
表格 5-18 格仁错地区下白垩统泥岩的主量元素分析结果(wt%) ........................ 100
表格 5-19 格仁错地区下白垩统泥岩的稀土元素和微量元素分析结果(p.p.m) .. 101
表格 5-20 格仁错地区下白垩统泥岩的Sr 同位素分析结果 ...................................... 103
表格 5-21 格仁错地区下白垩统泥岩的Nd 同位素分析结果 ..................................... 103 |
Edit Comment