Community response of microbial primary producers to salinity is primarily driven by nutrients in lakes | |
Yue, LY (Yue, Linyan)1,2; Kong, WD (Kong, Weidong)1,2,3; Ji, MK (Ji, Mukan)1,2; Liu, JB (Liu, Jinbo)4; Morgan-Kiss, RM (Morgan-Kiss, Rachael M.)5 | |
Source Publication | SCIENCE OF THE TOTAL ENVIRONMENT |
2019 | |
Volume | 696 Issue:0Pages:134001 |
DOI | 10.1016/j.scitotenv.2019.134001 |
Abstract | Higher microbial diversity was frequently observed in saline than fresh waters, but the underlying mechanisms remains unknown, particularly in microbial primary producers (MPP). MPP abundance and activity are notably constrained by high salinity, but facilitated by high nutrients. It remains to be ascertained whether and how nutrients regulate the salinity constraints on MPP abundance and community structure. Here we investigated the impact of nutrients on salinity constraints on MPP abundance and diversity in undisturbed lakes with a wide salinity range on the Tibetan Plateau. MPP community was explored using quantitative PCR, terminal restriction fragment length polymorphism and sequencing of cloning libraries targeting form IC cbbL gene. The MPP community structure was sorted by salinity into freshwater (salinity<1 parts per thousand), saline (1 parts per thousand < salinity<29 parts per thousand) and hypersaline (salinity>29 parts per thousand) lakes. Furthermore, while MPP abundance, diversity and richness were significantly constrained with increasing salinity, these constraints were mitigated by enhancing total organic carbon (TOC) and total nitrogen (TN) contents in freshwater and saline lakes. In contrast, the MPP diversity increased significantly with the salinity in hypersaline lakes, due to the mitigation of enhancing TOC and TN contents and salt-tolerant MPP taxa. The mitigating effect of nutrients was more pronounced in saline than in freshwater and hypersaline lakes. The MPP compositions varied along salinity, with Betaproteobacteria dominating both the freshwater and saline lakes and Gammaproteobacteria dominating the hypersaline lakes. We concluded that high nutrients could mitigate the salinity constraining effects on MPP abundance, community richness and diversity. Our findings offer a novel insight into the salinity effects on primary producers and highlight the interactive effects of salinity and nutrients on MPP in lakes. These findings can be used as a baseline to illuminate the effects of increased anthropogenic activities altering nutrient dynamics on the global hydrological cycle and the subsequent responses thereof by MPP communities. (C) 2019 Elsevier B.V. All rights reserved. |
Subject Area | Environmental Sciences |
WOS ID | WOS:000498798600031 |
Language | 英语 |
Indexed By | SCI |
Keyword | Subunit Genes Cbbl Climate-change Tibetan Plateau Carbon-fixation Bacterial Communities Nitrogen Deposition Antarctic Lakes Organic-carbon Fresh-water Salt-lake |
WOS Research Area | Environmental Sciences & Ecology |
WOS Subject | Environmental Sciences |
Cooperation Status | 国际 |
ISSN | 0048-9697 |
Department | 高寒生态重点实验室 |
URL | 查看原文 |
Publisher | ELSEVIER |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.itpcas.ac.cn/handle/131C11/9063 |
Collection | 图书馆 |
Corresponding Author | Kong, WD (Kong, Weidong) |
Affiliation | 1.Chinese Acad Sci, Inst Tibetan Plateau Res, Key Lab Alpine Ecol LAE, Beijing 100101, Peoples R China; 2.Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100039, Peoples R China; 3.Chinese Acad Sci, CAS Ctr Excellence Tibetan Plateau Earth Sci, Beijing 100101, Peoples R China; 4.Southwest Med Univ, Dept Hepatobiliary Surg, Affiliated Hosp, Luzhou 646000, Peoples R China; 5.Miami Univ, Dept Microbiol, Oxford, OH 45056 USA. |
Recommended Citation GB/T 7714 | Yue, LY ,Kong, WD ,Ji, MK ,et al. Community response of microbial primary producers to salinity is primarily driven by nutrients in lakes[J]. SCIENCE OF THE TOTAL ENVIRONMENT,2019,696 (0):134001. |
APA | Yue, LY ,Kong, WD ,Ji, MK ,Liu, JB ,&Morgan-Kiss, RM .(2019).Community response of microbial primary producers to salinity is primarily driven by nutrients in lakes.SCIENCE OF THE TOTAL ENVIRONMENT,696 (0),134001. |
MLA | Yue, LY ,et al."Community response of microbial primary producers to salinity is primarily driven by nutrients in lakes".SCIENCE OF THE TOTAL ENVIRONMENT 696 .0(2019):134001. |
Files in This Item: | ||||||
File Name/Size | DocType | Version | Access | License | ||
2019018.pdf(1800KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | View Application Full Text |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment